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Summary

In this thesis the use of engineering geological information, with emphasis on geological
hazards, within underground projects is reviewed and discussed. Based on a decision and
risk analysis approach, requirements on engineering geological information and a concept
of making statistically based engineering geological prognoses is proposed.

Decision and risk analysis provide a framework and wide variety of tools for approaching a
problem in a logic and stringent way. In the case of underground construction, the
technique has a potential of improving the decision process and the handling of
engineering geological information. The nature of the decision, being the main issue
throughout the complete thesis, may in short be summarized as:

a definition of possible alternatives,

a definition of a decision criterion,

an analysis of possible outcomes and

an estimation of the probability of possible outcomes.
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One important part of decision and risk analysis is to understand and describe the process
of events, following a realization of a hazard and ending with some sort of damage.
Furthermore to understand and describe events that may initiate the realization of a geolo-
gical hazard. The following definition is introduced: A geological hazard (e.g. flowing
ground), is a threat of a potential damage (tunnel failure) and is a built-in property of a
risk object (the rock mass). The damage event causes damage, i.e. in a wide sense loss of
resources. The initiating event (e.g. unsuitable or incautious excavation) triggers a da-
mage event. Warning bells (in this case e.g. increased deformations or muddy water flow
from probe holes) indicate that a hazards is about to be realized. It is concluded that
geological hazards play an important role within underground construction and envisaged
that a better understanding of the hazards themselves and the process from an initiating
event to the actual damage will lead to a more cost effective execution of underground
projects. A description and analysis of common damage events, warning bells and initia-
ting events show that in order to avoid damage it is within the risk analysis work important
to focus not only on technical/geological problems but also on management of the project
organisation. Good communication and transferring of correct information are found to be
key factors to carry out successful projects. In this respect it is also concluded that risk
analysis and quality assurance are closely related.

Engineering geological information and prognoses play an important role in decision-
making throughout an underground project. However, the complex nature of geological
hazards necessitates a stringent handling of engineering geological information and a
comprehensive quality assurance which reach beyond the scope of traditional systems. As
a consequence of this the concept of EGIR (Engineering Geological Information Require-
ments), including a top-down philosophy when approaching geological problems, is
introduced. The four corner-stones within EGIR are; the decision, the quantification of
uncertainty, the language and the quality assurance.

The first requirement implies that all engineering geological information must be adapted
to and relevant for the current decisions and the current project stage. The decision is the
main issue and should be put in focus. Decision and risk analysis provide a general
framework and specific tools for fulfilling this requirement.
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Secondly, uncertainty related to the information should be quantified, primarily by using
statistical modelling. It is shown that it is possible to create stochastic geo-models based on
traditional statistical modelling principles for example in order to model spatial variability
in rock. Furthermore, that a bayesian approach provides a possibility for combining
subjective judgement with observational data and update prior knowledge as additional
observations are made available. This implies an excellent tool of achieving better
handling of uncertainty. Thereby, the making of reliable engineering geological prognoses
as a basis for decisions is facilitated.

The third requirement says that explicit information must be comprehensive enough to
flow properly through the project organisation and yet be understandable. It must be
unambiguous and adapted to the receiver. It is for example argued that traditional rock
classification systems, where a lot of information is truncated and translated into one single
value, sometimes but far from always fulfil this requirement. Especially engineering
geological information used during the construction stage must be more comprehensive
and more focused upon geological hazards.

Finally, the information should be quality assured. As the engineering geological
information is related to very complicated processes, a dual quality system is proposed.
This systems aims at doing the things right, as emphasized in traditional quality systems,
and doing the right things.

By step-by-step fulfilling EGIR and applying a top-down working procedure (decision-
model-data) one will automatically get a system or a working procedure for forming,
carrying and transferring engineering geological information and establishing engineering
geological prognoses that has the potential of improving the overall execution of under-
ground projects. The proposed methodology has been applied to three Swedish case studies
each representing a typical problem often encountered in underground projects. For each
case, the concept of EGIR and a project specific, specially developed stochastic geo-model
have been tested. The first case, from the Stockholm Ring Road Project, is an example of
modelling a geologic boundary (depth to rock surface) with kriging. Secondly, a layered
stochastic geo-model has been employed to calculate expected time and amount of
construction material for a TBM-tunnel at the Aspé Hard Rock Laboratory. The last case,
from the Hallandsas Railway Tunnel Project, illustrates the use of a bayesian stochastic
geo-model for predicting excavation conditions, ahead of the tunnel face, for the coming
rounds. The results from the case studies indicate that it is possible:

o To focus upon the important decision and gather relevant engineering geological
information for making a prognosis as basis for this decision, by employing a top-
down approach.

o To handle and quantify uncertainty, as long as some main demands on the statistical
modelling are fulfilled. Stochastic geo-models should consequently; reflect the
nature properly (be geologically logical), include routines for updating, include
routines for expressing the reliability of investigation methods and programmes,
and make subjective assessments possible.

o To use a language related to engineering geological information that is understood,
possible to communicate, unambiguous and adapted to the receiver. This
requirement is easier fulfilled by evaluating the sender-receiver situation,
evaluating the depth of messages (information-exformation) and define classes or
states relevant for the current decisions and problems.

The last requirement according to EGIR is to gain a satisfactory quality assurance of the
engineering geological information. This issue is really outside the scope of this thesis but




literature studies carried out and the author’s experience indicate the need for a quality
system based on a broad definition of quality.

Altogether it might be concluded that the implementation of decision and risk analysis,
EGIR and the top-down philosophy (for approaching engineering geological problems),
outlined in this thesis, has a potential of making the execution of underground projects
more successful and cost effective. However, it is also important to remember that if an
unsuitable model and/or wrong engineering geological information are used, the basis for
decisions may be insufficient or wrong. Examples are given in the thesis.
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